NANO FUELS: EFFECTIVE ALTERNATIVE TO DIESEL FOR CI ENGINE

Dipesh Tare, A.G.Londhekar.

Abstract— Central objective of this review paper is to encapsulate findings to have viable alternative to diesel as main working medium in Compression Ignition Engine. Various investigations on biodiesel were succeeded in order to diminish burden on consumption of diesel but due to lesser thermal efficiency and emission characteristic of divers blends could not achieve at par results with neat diesel. Advancement in Nanotechnology and successful results of Nano particle in varied fields seek attention of researchers and engineers to include Nano particle in diesel blending. This study represents overview and results on experimental investigation to examine the effect of Nano additives on diesel engine performance at variable operating conditions of loads and speeds. Use of Cerium Oxide, Alumina Oxide, Carbon nano tube and other are used for experimentation. Water emulsion blends also tested with neat diesel and nano fuels. Advertently it can be seen that improvement in brake thermal efficiency (BTE) is increased by 1-2%. Reduction in major pollutant such as NOx, CO, HC has been achieved. Brake specific fuel consumption (BSFC) was reduced by marginal amount.

Keywords-Nano particle; Cerium Oxide; Alumina Oxide; Carbon nano tube; BTE, BSFC; emulsion; NOx; CO; HC

- - - - - - - - •

I. INTRODUCTION

Internal combustion engine are prime source of power in automotive industry and other industries. Diesel engines are widely used in industry. Worldwide consumption of diesel alone is 91,190,000bbl/day with India standing on fourth rank with 3,660,000 bbl/day[22]. Many researches are being carried to change in fuel properties to enhance the properties of diesel. Alsoadditives are proven to meet performance of diesel engine. It is known fact that fossilfuel resources are depleting day by day and hence, there is a need to search for alternative fuels to fulfill the growing energy demands of the world. More importantly, the environmental crises caused by vast combustion of fossil fuels have also led researchers towards finding strategies to address the critically worrying level of air pollution and its potentially tragic consequences e.g., climate change [2]. Among the various alternative fuelshave received a great deal of attention as the most desirable fuel extenders for the transportation sector. Because of its reproducibility, nontoxicity, and sulfur free, biodiesel is considered as a potential alternative fuel of diesel fuel. Furthermore, due to its similar properties to diesel fuel. Biodiesel can be produced from vegetable oils as well as animal fats. It is advisable to use non-edible vegetable oil than edible oils reason being edible oils is used for food production and non-edible oils are not suitable for human consumptions [20]. Formation of NOx is point of concern while operating on diesel or biodiesel. Combustion of diesel or bio diesel in CI engine resulted in high temperature leading to NO is formation, which is hazardous gas to the environment because NO can react with oxygen present in the

combustion chamber which result in the formation of NO2.

Combination of NO and NO₂ give rise to formation of NOx. Many researchers investigated various biodiesel blends in order to improve upon overall efficiency and reduction in pollutants. To overcome problems raised by diesel and biodiesel, nano size metal particles are investigated. Due to small particle size, shortened ignition delay, improvement in oxidation and decreased burn time was observed heading towards complete combustion of fuel [21].

Objectives of review paper

This paper provides a cumulative idea of nano particles blended with diesel in various proportions. Results discussed here may find helpful for researchers, engineers and other aspirants in the field of alternative fuels. Some of water emulsion results are being compiled which might give good comparison between diesel, biodiesel, emulsion and nano fuel. Detailed discussion in made on physical characteristics, performance and emission characteristics of fuels.

II. Effect of nanofluid additives on fuel properties

Physical properties of diesel when compared to Nano additives blends prepared shown other values than neat diesel. All the researchers have studied the physical properties of diesel, emulsion and nano additives with standard ASTM procedures.

a) Effect on Density, flash point and viscosity

Sadhikbasha et al[1] prepared water-diesel emulsion fuel and blended with Alumina particle, which resulted into high density and kinematic viscosity of mixture as compared to neat diesel. C.S. Aalam et al.[2] studied morphological characteristics of Aluminum nano particles with scanning electron microscopy. Methyl ester when added with Aluminum nano particle (ANP) showed

[•] Dipesh Tare, A.G. Londhekar are currently working in Rajiv Gandhi Institute of Technology (Mechanical Department), University of Mumbai , Maharashtra, India.

increase in viscosity, density also flash point value was noticeable. Addition of ANP in the range of 50-100 ppm

D11/1		E 1 :NOMENCLATUR	
Bbl/day	Barrels per day	ANP	Aluminum nano particle Discrit(22%) Surfactor $\pi(22\%)$ Matter (15%)
BSFC	Brake specific fuel consumption	D2S15W	Diesel(83%) Surfactant(2%) Water(15%)
BTE	Brake Thermal Efficiency	D2S15W25A	Diesel(83%) Surfactant(2%) Water(15%)
	-		Alumina(25 ppm)
CI	Compression Ignition	D2S15W50A	Diesel(83%) Surfactant(2%) Water(15%) Alumina(50 ppm)
			Diesel(83%) Surfactant(2%) Water(15%)
CO	Carbon mono oxide	D2S15W100A	Alumina(100 ppm)
CO ₂	Carbon di oxide	MME20	Mehua Methyl Ester(20%) ,Diesel(80%)
			Mehua Methyl Ester(20%)
NOx	Oxides of Carbon	MME20+ANP50	,Diesel(80%),Alumina(50 ppm)
NO	N.T. 11 1.1		Mehua Methyl Ester(20%) ,Diesel(80%)
NO_2	Nitrogen di oxide	MME20+ANP100	,Alumina (100 ppm)
HC	Hydrocarbon	B20	80% diesel, 20% Soybean
	5		80% diesel,
AC	Air cooled	D80SBD15E4S1 + alumina	15%soybean,4%ethanol,1%isopropanol,
		alullilla	Alumina 100mg/L
DI	Direct Injected	JBD5A5C	Alumina 5 ppm and Cerium 5 ppm
IT	Ignition timing	JBD15A15C	Alumina 15 ppm and Cerium 15 ppm
RET IT	Retarded Ignition timing	JBD30A30C	Alumina 30 ppm and Cerium 30 ppm
ADV IT	Advanced Ignition timing	Methyl Ester(B20)	80% Diesel ,20% PSWME
W	Water	D80B20ZnO50	80% Diesel ,20% PSWME ,50 ppm Zic Oxide
D	Diesel	D80B20ZnO100	80% Diesel ,20% PSWME ,100 ppm Zic Oxide
MnO	200 mg of MnO in 1L of diesel	P50	$PdL_2 50 ppm$
DCuO	200 mg of MnO in 1L of diesel	P100	PdL_2 100 ppm
JB20D	80% Diesel ,20% by vol.Jojoba	N50	NiL ₂ 50 ppm
JB20D10A	80% Diesel , 20% by vol.Jojoba	N100	NiL ₂ 100 ppm
	,10 mg/l 80% Diesel ,20% by vol.Jojoba		
JB20D20A	,20 mg/1	JBD	Jatropha biodiesel
	80% Diesel ,20% by vol.Jojoba		
JB20D30A	,30 mg/l	JBD25A	25 ppm alumina
	80% Diesel ,20% by vol.Jojoba		
JB20D40A	,40 mg/l	JBD50A	50 ppm alumina
	80% Diesel ,20% by vol.Jojoba		
JB20D50A	,50 mg/1	JBD25CNT	25 ppm CNT
A12O3	Diesel ,50 ppm Alumina oxide	JBD50CNT	50 ppm CNT
CuO	Diesel ,50 ppm copper oxide	JBD25A25CNT	Alumina ,CNT (25ppm each)
B5	95% Diesel,5% Bio diesel	DAG10	10 ppm Silver powder
MWCNT	Multi walled carbon nano tube	DAG20	20 ppm Silver powder
E10	78.5% Diesel , 10 % Water, 11.5	DAG40	40 ppm Silver powder
LIU	% Glycerin	DINGHO	to ppin bliver powder
E15	75% Diesel, 15 % Water, 10 %	A1	0.5wt% Al particle ,0.1wt% Span80
210	Glycerin		one nero in paracle joint to oparioo
D3515	Diesel ,35 ppm Alumina,15 ppm	B1	
	Cobalt		0.5wt% Boron particle ,0.1wt% Span80
D2525	Diesel ,25 ppm Alumina, 25	F1	
	ppm Cobalt		0.5wt% Iron particle ,0.1wt% Span80
D1535	Diesel ,15 ppm Alumina,35 ppm		
	Cobalt		

would result in decrease in density. Soyabean biodiesel blend with 20% soyabean and 80% diesel was prepared by T Shaafi et.al [3] and infuse other blends with 80% diesel, 15% soyabean, 4% ethanol and 1% isopropanaol as surfactant and alumina nano particles of 100mg/lit. This recorded viscosity as more for soyabean and that of diesel. A Kenskin et al[8] worked with Palladium and Nickel dopedas 50 ppm and 100 ppm into diesel fuel did not show any significant change in density and calorific value except for marginal increase in flash point which is maximum for N100 indicating storage of fuel more s

TABLE 2: CHEMICAL AND PHYSICAL PROPERTIES OF FUELS

Ref.	TABLE 2; CHE	Viscosity	Flash point	Cal. value	Density@15°C	
No.	Fuel	(cSt)	(°Č)	(MJ/kg)	(kg/m ³)	Cetane No.
	DIESEL	2.1	50	42.3	830	46
	D2S15W	4.9	62	38.8	858.5	43
1	D2S15W25A	4.94	63	39.3	859.1	48
	D2S15W50A	4.98	65	39.8	859.3	50
	D2S15W100A	5.01	66	39.9	859.6	50
	DIESEL	3	56	42	815	47
	MME	4.9	136	39.95	869	56
2	MME20	3.4	76	41.62	826	49
	MME20+ANP50	3.37	71	41.665	827.5	49.5
	MME20+ANP100	3.33	65	41.69	829	51
	DIESEL	2.61	-	44.7	825	57
0	SOYBEAN DIESEL	4.78	-	41.2	865	49
3	B20	3.7	-	43	847.7	42
	D80SBD15E4S1+ALUMINA	3.37	-	42.59	840	52
	DIESEL	2.84	68	42.7	840	48
	JATROPA BIODIESEL	4.34	130	42.673	874.3	52.7
4	ETHANOL	0.79	13.5	27	785	6
	BDE	2.86	20	39.982	840.2	53
	BDE+AL	2.57	22	39.137	837.2	54
	DIESEL	2.54	50	-	833	52
5	ZJME25	3.56	56	-	846	55
	AONP25	3.39	57	-	849	57
	AONP50	3.17	58	-	853	58
	DIESEL	2.2	48	42.3	835	-
	JATROPA BIODIESEL	4.1	85	38.5	873	-
6	JBD5A5C	4.25	80.5	38.8	876	-
	JBD15A15C	4.5	74.3	38.6	879	-
	JBD30A30C	4.8	70.2	38.2	883	-
	B20	3.1	46	44.074	834	57
7	D80B20ZNO50	3.1	47	44.334	833	58
	D80B20ZNO100	3.3	47	44.3	832	58
	D	3.3	55	44.415	830	56.45
	P50	3.3	55.6	44.164	835	56.71
8	P100	3.3	56.4	44.172	387	56.82
	N50	3.2	56.1	44.157	832	55.99
	N100	3.2	56.8	44.165	834	55.45
	JBD	5.25	85	38.88	895	53
	JBD25A	5.31	84	39.22	896	54
0	JBD50A	5.35	82	39.53	897	56
9	JBD25CNT	5.29	83	39.5	895.5	55
7	JBD50CNT	5.33	81	39.78	897.9	57
	JBD25A25CNT	5.36	81	39.99	895.2	57
	JME	5.05	85	38.88	895	53
	JME2S5W	5.4	140	37.05	899.8	51
10	JME2S5W25CNT	5.43	130	37.28	897.2	54
	JME2S5W50CNT	5.76	125	37.35	897.8	55
	JME2S5W100CNT	5.91	122	37.85	899.4	56

Carbon nano tube and Alumina when blended with Jatropha biodiesel by J. Brazet al.[9] shows nearly same density and calorific value when tested by standard ASTM procedures.

a) Effect on Cetane Number and Calorific Value:

Diesel's cetane number is a measure of the fuel's delay of ignition time i.e the amount of time between the injection of fuel into the combustion chamber and the actual start of combustion of the fuel charge. Marginal increase in Cetane index was observed with Aluminum nano particle in most of the investigation. Also slight improvement in calorific value of all the nano and emulsion blends was noted which denotes higher heat release during the combustion process.

III. Effect of nano fuel on Engine Performance:a) Brake thermal Efficiency:

Mehta et al [14] prepared and stabilized nano emulsion fuels with water in diesel (W/D), nano aluminum in water-diesel (W/DA), nano silicon diesel (W/DS), which were tested with variable loads and significantly registered increase in brake thermal efficiency (BTE) as 16% and 14% for W/DA and W/DS respectively. Addition of nano particles enhanced calorific value promoting complete combustion due to higher evaporation rates, reducing ignition delay and hence promoting full release of thermal energy resulting into high thermal efficiency. Emulsion fuel with water concentration of 10% and 15% were prepared with organic material as Glycerin. Tested on four-cylinder diesel engine with constant speed resulted into higher BTE for E10 and E20 as compared to neat diesel. W.M.Yang et al.[19] also noted that E10 emulsion could give BTE as 7.8% increase and further of 14.2% increase in BTE at 1200 rpm and 3600 rpm respectively. E10 has better efficiency than E15 this is due to fact that E15 contains more water than E10 which bring down the flame temperature and affects the combustion process. M.A. Lenin et al. [15] prepared samples of diesel with manganese oxide and copper oxide by sol gel method, tested on a single cylinder resulted into 4% marginal increase in the BTE as compared to diesel. SadhikBasha et al [1]could find 28.9% BTE for D2S15W100A against 25.2% for neat diesel at full load condition. This is could be probably attributed to the presence of the potential alumina nano particle in water diesel emulsion fuel due to micro- explosion and secondary optimization phenomenon. T.Shaafi et al.[3] obtained an increase in thermal efficiency of 15.8% and 17.9% for B20 and D80SBD15E4S1 + alumina fuel blend respectively. This is due to the complete combustion that occurred in the B20, due to the presence of higher oxygen in the fuel and further increase in efficiency in case of D80SBD15E4S1 + alumina is due to micro explosion of primary droplet and higher evaporation rate due to presence of the alumina particle. C. Aalam [5] examined BTE on CRDI diesel engine and received maximum increase in BTE as 2.5% compared to neat diesel when 50 ppm dosing of Aluminum oxide was made to diesel. C. Aalam et al [2] obtained the BTE of the MME20 + ANP100 was better than that of other fuel blends and neat diesel a gain of 1.58% and 7.34% was recorded when ANP was added with MME20 in different concentration of 50 ppm and 100 ppm. Jatropha Methyl Ester (JME) nano emulsion received higher BTE in comparison to other blended fuel with JME tested by

SadhikBasha et al [10]. Heat release rate is more in case of emulsion resulting into higher BTE. CNT blended full improves homogenization of fuel and air mixing causing combustion and burning characteristics showing 28.45% BTE for JME2E5W100CNT which is 24.80% for JME fuels. A. Prabhu et al [6] used mixture of Al₂O₃ and CeO₂nano particles which recorded 29%, 30% and 31% for JBD5A5C, JBD15A15C and JBD30A30C respectively

b) Brake Specific Fuel Consumption:

Brake Specific Fuel Consumption (BSFC) was observed as 0.32 kg/kWhr for D2S15W100A and for D2S15W50A, D2S15W25A, D2S15W is 0.33kg/kWhr, 0.33 kg/kWhr, 0.35 kg/kWhr and 0.33 kg/kWhr respectively. This result was obtained due to shortened ignition delay of nano fuels[1]. Whereas decrease in up to 0.5% with CuO additives and decrease by upto 1.2% with Al₂O₃ was noted by C. Aalam et al [2] this result could be possible due to abandoned Oxygen and effect of nano particle on physical properties of diesel fuel causes to increase in combustion efficiency which in turn showed reduced BSFC. Diesel Sovabean bio-diesel(B20) when tested against added Alumina particle at variable loads found BSFC to be lowest for 25% ans 50% of load. Due to lower calorific value of these fuel a drop of 10.50% and 11.46% was recorded for full load[3]. H Venu et al[4] tested effect of Al₂O₃ with retarded and advanced injection timing on BSFC. Retarded injection timing resulted into 9.37% reduction in BSFC at part load condition. AT original injection loads BSFC reduced by 12%, 1%, 9.37% and 12.5% for engine loads of 25%, 50%, 75% and 100%. When nano additives dispersed in BDE at advanced injection timing BSFC were higher by 4.65%, 6.99%, 19.35% and 4% for 25%, 50%, 75% and 100% engine loads respectively. Aluminum oxide particle, oxidized the carbon deposits in the engine cylinder leading to reduced fuel consumption, thus BSFC of AONP blended is lower than that of ZJME25 for all loads[5]. for JBD15A15C, JBD30A30C increased BSFC was found as 0314kg/kWh, 0.303kg/kWh, 0.293kg/kWh respectively[7]. A. Kenskin et al[8] made comparison of BSFC of diesel with P50, P100, N50 and N100 blendes and found 1.29%, 3.28%, 1.72% and 3.1% decrease in BSFC respectively. Maximum was obtained with P100 at 1600 rpm as 7.75%. JME2S5W100CNT fuels showed BSFC as 0.301kg/kWhr as compared to JME2SW25CNT, JME2S5W50CNT which was kg/kWhr , 0.308 kg/kWhr respectively[10]. 0.315 H.SaukhtSaraee et al[11] recorded increase of fuel consumption by 40 ppm of silver nano particle added to bio diesel. Maximum reduction rate of 3% was observed for D10 fuel maximum increase rate of 4.3% and 1% were associated with D40 fuel at 1900rpm and D40 at 1800 rpm respectively. Boron and Aluminum nano particles showed increase in fuel consumption as compared to diesel at lower load due to preheating and ignition stages whereas ferrous showed

Ref.	Engine	Test	E	Nuez Addition		Performance	
No	Туре	conditio n	Fuels	Nano Additives	Power	BSFC	BTE
			Diesel	-	-	0.33 Kg/KWh	25.2%
	4S, 1-	Cons tant	D2S15W	Diesel(83%)+Surfactant(2%)+Water(15%)	-	0.35Kg/KWh	26.9%
1	cylinder, AC, CR	Speed (1500	D2S15W25A	Diesel(83%)+Surfactant(2%)+Water(15%)+Al umina(25 ppm)	-	0.33 Kg/KWh	27.9%
	17.5:1	RPM)	D2S15W50A	Diesel(83%)+Surfactant(2%)+Water(15%)+Al umina(50 ppm)	-	0.33 Kg/KWh	28.3%
			D2S15W100A	Diesel(83%)+Surfactant(2%)+Water(15%)+Al umina(100 ppm)	-	0.32 Kg/KWh	28.9%
	4S,	Cons	Diesel	-	-	0.3 kg/kWh	25%
2	Vertical, water	tant Speed	MME20	Mahua Methyl Ester(20%) + Diesel(80%)	-	0.32 kg/kWh	25%
	cooled, CR 17.5:1		MME20+ANP50	Mahua Methyl Ester(20%) + Diesel(80%)+ Alumina(50 ppm)	-	0.33kg/kWh	26%
	17 1012		MME20+ANP100	Mahua Methyl Ester(20%) + Diesel(80%) + Alumina (100 ppm)	-	0.33kg/kWh	27%
	4S, 1-		Diesel	-	-	0.349kg/kWh	
3	cylinder, 4.4kW CR:	varia ble	Diesel + Soybean oil(B20)	80% diesel, 20% Soybean	-	↓10.60%	↑ 15.8%
	17.5:1,AC	speed	Diesel + Soybean+ ethanol+isopropanol (D80SBD15E4S1 + alumina)	80%diesel, 15%soybean,4%ethanol,1%isopropanol, Alumina 100mg/L	-	↓11.46% (0.309kg/kWh)	17.9%
	1-		Diesel	-	-	0.263 kg/kWh	0.32.33
	cylinder, RP: 4.4kW	Cons tant	Bio diesel	Jatropha oil	-	0.318 kg/kWh	0.286
6	at 1500 RPM,	Speed (1500	Diesel+Jatropha+Alumi na+Cerium	Alumina 5 ppm and Cerium 5 ppm	-	0.314kg/kWh	0.29
	CR:17.5:1, AC	RPM)	Diesel+Jatropha+Alumi na+Cerium	Alumina 15 ppm and Cerium 15 ppm	-	0.303kg/kWh	0.3
	110		Diesel+Jatropha+Alumi na+Cerium	Alumina 30 ppm and Cerium 30 ppm	-	0.293kg/kWh	0.31

R	Engine	Test	Fuels	Nano Additives	Power	BSFC	39 BTE					
ef.	Type	condition	I uels	Nano Additives	Tower	DOPC	DIL					
	4S, 1-		Diesel + Pomolin Stearin Wax Methyl Ester(B20)	80% Diesel + 20% PSWME	-	0.284kg/kWh	0.28					
7	cylinder, 4.4kW CR:	variab le speed	Diesel + Pomolin Stearin Wax Methyl Ester+Zinc	80% Diesel + 20% PSWME + 50 ppm Zic Oxide	-	0.278 kg/kWh	0.288					
	17.5:1,AC		Diesel + Pomolin Stearin Wax Methyl Ester+Zinc	80% Diesel + 20% PSWME + 100 ppm Zic Oxide	-	0.272 kg/kWh	0.2996					
			Diesel	-	11.8 kW (3000 RPM)	-	-					
			Diesel + Palladium (P50)	PdL ₂ 50 ppm	(3000 RPM)	↓1.29%	-					
8	1- cylinder, 13HP,	Const ant Speed	Diesel + Palladium (P100)	PdL ₂ 100 ppm	(3000 RPM)	↓3.28%[Max7.75% at 1600RPM]	-					
	CR:17:1, AC		Diesel + Nickel (N50) NiL ₂ 50 ppm		11.51kW ↓1.72% (3000 RPM)		-					
			Diesel + Nickel (N100)	NiL ₂ 100 ppm	11.72kW (3000 RPM)	↓3.1%	-					
			Jatropha biodiesel (JBD)		-	0.37kg/kWh	24.9%					
	4S, 1-	Const				Jatropha + Alumina (IBD25A)	25 ppm alumina	-	-	-		
9	cylinder,											Jatropha+ Alumina
	4.4kW CR: 17.5:1,AC	ant Speed	jatropha +CNT(JBD25CNT)	25 ppm CNT	_	-						
			jatropha + CNT(JBD50CNT)	50 ppm CNT	-	0.33kg/kWh	27.1%					
			Jatropha + Alumina+CNT(IBD25A25CNT)	Alumina + CNT (25ppm each)	-	0.31kg/KWh	28.9%					
	6-		Diesel + Silver Nano	10 ppm Silver powder	Approx. 4% in every	↓3%	-					
11	cylinder, RP:82kW,	variab le speed	Diesel + Silver Nano	20 ppm Silver powder	combination Maximum for DAG 40 of 64.2kW at	↑ 4.3% at 1900RPM	-					
	CR:16:1, AC		Diesel + Silver Nano	40 ppm Silver powder	1710RPM	↑1 % at 1805RPM	-					
	4S, 1-	Const	Diesel + Aluminum+	0.5wt% Al particle + 0.1wt% Span80	-	↓7%	19%					
12	cylinder, 4.4kW CR:	ant Speed (1500	Diesel +boron+ Span80(B1)	0.5wt% Boron particle + 0.1wt% Span80	-	marginal increase	↑2%					
	17.5:1,AC	RPM)	Diesel + iron+ Span80(F1)	0.5wt% Iron particle + 0.1wt% Span80	-	marginal increase	$\uparrow 4\%$					

ISSN 222	9-5518	0	5				
R ef.	Engine Type	Test condition	Fuels	Nano Additives	Power	BSFC	BTE 40
			Diesel (D0000)	-	-	0.6kg/kWh	28%
13	4S, 1- cylinder,	Const ant Speed	Diesel + Alumina+ Cobalt (D3515)	Diesel +35 ppm Alumina+ 15 ppm Cobalt	-	0.55kg/kWh	27%
10	4.4kW CR: 17.5:1,AC	(1500 RPM)	Diesel + Alumina+ Cobalt (D2525)	Diesel +25 ppm Alumina+ 25 ppm Cobalt	-	0.53kg/kWh	29%
			Diesel + Alumina+ Cobalt (D1535)	Diesel +15 ppm Alumina+ 35 ppm Cobalt	-	0.52kg/kWh	26%
			Diesel	-	-	-	-
14	4S, 1- cylinder,	variab	water in diesel (W/D)	1% vol water	-	marginally high	-
	4.4kW CR: 17.5:1,AC	le speed	Nano -aluminum in water and diesel (W/DA)	1%vol.water + 0.1%wt nAl	-	↓21%	↑ 16%
			Nano -silicon in water and diesel(W/DS)	1%vol.water + 0.1%wt nSi	-	↓37%	↑ 14%
	4S, 1-		Diesel		-		27%
15	cylinder, 4.4kW CR:	Const ant Speed	Diesel + manganese oxide(MnO)	200 mg of MnO in 1L of diesel	-	-	25%
	17.5:1,AC		Diesel + copper oxide(CuO)	200 mg of MnO in 1L of diesel	-		24%
			Diesel (D100)	-	-	370g/kW.h (1500RPM) 380g/kWh (1300RPM)	23% (1500RPM) 23% (1300RPM)
			Jojoba Bio diesel (JB20D)	80% Diesel + 20% by vol.Jojoba	-	390 g/kWh (1500RPM) 405 g/kWh (1300RPM)	20% (1500RPM) 20% (1300RPM)
	4s, 1-		Jojoba +Alumina (JB20D10A)	80% Diesel + 20% by vol.Jojoba + 10 mg/l	-	365 g/kWh (1500RPM) 410 g/kWh (1300RPM)	21% (1300RPM)
16	cylinder, 55kW,	Two speeds	Jojoba +Alumina (JB20D20A)	80% Diesel + 20% by vol.Jojoba + 20 mg/l	-	380 g/kWh (1500RPM) 400 g/kWh (1300RPM)	21% (1200BPM)
	55KVV,	-	Jojoba +Alumina (JB20D30A)	80% Diesel + 20% by vol.Jojoba + 30 mg/l	-	382 g/kWh (1500RPM) 355 g/kWh (1300RPM)	21% (1500RPM)
			Jojoba +Alumina (JB20D40A)	80% Diesel + 20% by vol.Jojoba + 40 mg/l	-	355 g/kWh .h(1500RPM) 360 g/kWh 1300RPM)	24% (1500RPM) 24% (1300RPM)
			Jojoba +Alumina (JB20D50A)	80% Diesel + 20% by vol.Jojoba + 50 mg/l	-	385 g/kWh (1500RPM) 355g/kWh (1300RPM)	22% (1500RPM)
	4s, 1-		Diesel	-	5.2KW	273 g/kwh	22%(1300RPM) -
17	cylinder, 5.1kW, CR	variab le speed	Diesel + Alumina oxide(Al2O3)	Diesel + 50 ppm Alumina oxide	5.5KW	270 g/kwh	-
	20.3:1	CR le speed	Diesel + copper oxide(CuO)	Diesel + 50 ppm copper oxide	5.2KW	272 g/kwh	-

International Journal of Scientific & Engineering Research, Volume 8, Issue 2, February-2017 ISSN 2229-5518

<u>SSN 2229-</u> Ref . No	En gine	Test conditio	Fuels	Nano Additives	Power	BSFC	BTE	41
			Diesel+ Bio diesel (B5)	95% Diesel+ 5% Bio diesel	-	-	-	
			Diesel+ Bio diesel (B20)	80% Diesel+ 20% Bio diesel	-	-	-	
	4S,		Diesel+ Bio diesel +MWCNT-	B5 + 30 ppm MWCNT-amide catalyst	↑0.58%	↓0.42%	-	
18	6- cylind	const ant	Diesel+ Bio diesel +MWCNT-	B5 + 60 ppm MWCNT-amide catalyst	↑1.79%	↓0.84%	-	
10	er, CR 16.1:1	speed	Diesel+ Bio diesel +MWCNT-	B5 + 90 ppm MWCNT-amide catalyst	↑3.25%	↓3.09%	-	
			Diesel+ Bio diesel +MWCNT-	B20 + 30 ppm MWCNT-amide catalyst	↑2.28%	↓0.34%	-	
			Diesel+ Bio diesel +MWCNT-	B20 + 60 ppm MWCNT-amide catalyst	↑5.72%	↓1.49%	-	
			Diesel+ Bio diesel +MWCNT-	B20 + 90 ppm MWCNT-amide catalyst	↑7.81%	↓4.51%	-	
	4s, 4-		Diesel		-	-	32%	
19	cylind er,	varia ble speed	Diesel + water + Glycerin (E10)	78.5% Diesel + 10 % Water + 11.5 % Glycerin	-	-	33%	
	75kW, CR:18		Diesel + water + Glycerin (E15)	75% Diesel + 15 % Water + 10 % Glycerin	-	-	37%	
↓ - inc	rease; ↓ d	lecrease						

International Journal of Scientific & Engineering Research, Volume 8, Issue 2, February-2017

International Journal of Scientific & Engineering Research, Volume 8, Issue 2, February-2017 ISSN 2229-5518

IV. Effect of nano fuel on emission characteristics

1. Effect on NOx emission:

Emission of NOx mainly depends on temperature, the local concentration of oxygen and duration of combustion during different combustion phases on the different combustion zones. Addition of nano particles increases the diffusion controlled combustion duration which helps in increase of NOx[5]. NOx emission decreased for water-diesel emulsion as compared to neat diesel and even further reduced by help of nano particles. It is observed that D2S15W100A has 891 ppm NOx as compared to 1340 ppm of neat diesel [1]. This may be due to fact that lower the exhaust gas temperature because of more water concentration[19]. At part load NOx was found to be same for B20 and emission D80SBD5E4S1+Alumina. Surprisingly B20 resulted more emission in comparison to D80SBD5E4S1+Alumina at 50% load. At full load increase in emission was 7.2% and 9.9% was noted for B20 and D80SBD5E4S1+Alumina[3]. Addition of Silver nano particle also have reduced the value of 20-23% in idle mode of 1900 rpm for D40. Maximum NOx of 1427 ppm is related to diesel at 1330 rpm. For 20 ppm nano particle blend at 1900 rpm was found with 250 ppm of NOx[11]. H. Venu et al [3] when performed testing with Injection Timing (IT) RET IT slips on to NOx by 25.89%, 22.86%, 15.98%, 8.55% and 1.31% at engine load of 0%, 25%, 75% and 100% respectively. Also Al₂O₃ reduced NOx by 9.11% and 5.92% at 50% and 75% at 50% and 75% load. On the other hand NOx was increased by 5.44% and 5.13% for 75% and 100% load when operated with ADV IT. According to Zeldovich thermal mechanism an increase of 5% and 3% of NOx was recorded for A1 and F1 particles as compared to diesel and B_1 nanofuels [12]. Emulsion of water diesel (W/D) showed reduction of 13% in comparison to diesel on the contrary W/DA and W/DS increased NOx emission by 5% and 4% respectively [14].

2. Effect on Hydrocarbon (HC) emission:

Oxygen content is main reason for HC emission reduction and complete combustion. Increase of AONP dosing level with ZJME bio diesel resulted in increase of 0.2169 /kWhr, 0.6129/kWhr and 0.318/kWhr for ZJME25, AONP25 and AONP50 blends respectively [5]. W.M.Yang et al[19] found HC emission to be increased for lower loads for E10 and E15 fuels. Fuel air equivalence ratio of the diesel engine is low and there is enough oxygen available for fuel to burn completely and thus HC emissions are very low for E10, E15 and diesel. With MME20+ANP100 fuel reduction of HC was noted as 26.04% at full load as ANP supplies the oxygen for the oxidation of hydrocarbon [2]. Metal oxide nano particles acts as oxygen donating catalyst which provides oxygen for oxidation. HC reduced by 13% and 5% when Al₂O₃ and CuO blends were used[17].

3. Effect on Carbon monoxide (CO) emission:

42 Characteristic of shortened ignition delay enhances combustion process in turn the degree of fuel air-mixture and uniform burning is possible, thus appreciable reduction in Carbon monoxide is observed for Alumina oxide [5]. Increase in CO emission was noticed by 66% at 25% load for D80SBD15E4S1+Alumina and it was reduced by 40% at full load in comparison to B20 and neat diesel. This was possible might be due to the fuel-rich operating condition at low load in presence of nano particles and also due to fuel-lean combustion the nano particle enhances the atomization rate at full load [6]. 68.15% decrease in CO recorded with metal particles of Palladium (II) and Nickel (NiL₂)[8]. Jatropha Methyl Ester blended with water shows 0.085% (by Vol.) CO emission and same goes to reduce at 0.06% (by Vol.) when blended with carbon nano tube by 100 ppm. This is also explained by poor air fuel mixing of water emulsion and nano particle accelerates combustion process.

V. Conclusion

Nano metal particles are used to blend with diesel and biodiesel in scope of improving overall efficiency of CI engine. Analysis shows following conclusion

- 1. Nano particle improves the cetane number and density. Increase in calorific value and flash point was remarkable.
- 2. With Alumina nano particle brake thermal efficiency has increased approx. 2% to 4% with any of diesel or biodiesel blends.
- 3. Marginal decrease of 1% to 3% in BSFCshown by papers. However in emulsion blends increase in brake fuel consumption is also noticed.
- 4. Better combustion in nano fuel showed reduction in HCin all metal blends examined at full load condition whereas showed increase when Jajoba bio diesel is blended with Alumina
- 5. With almost all metal particle reduction in NOx is possible but significant reduction was upto 2% -4% when used alumina nano particles.
- 6. CO also reduced while using nano fuel due to shortened ignition delay.

43

ABLE 4: EMISSION CHARACTERISTICS

Ref	Engine						Emission		
No.	Туре	Test condition	Fuels	Nano Additives	NOx	СО	UHC	Smoke Opacity	CO2
			Diesel	-	1340 ppm		82 ppm	71%	-
	4S, 1-		D2S15W	Diesel(83%)+Surfactant(2%)+Water(15%)	1009 ppm	0.4%	91 ppm	50%	-
1	cvlinder.	Constant Speed (1500	D2S15W25A	Diesel(83%)+Surfactant(2%)+Water(15%)+Alumina (25 ppm)	989 ppm	0.5%	80 ppm	49%	
		RPM)	D2S15W50A	Diesel(83%)+Surfactant(2%)+Water(15%)+Alumina (50 ppm)	945 ppm	0.42%	74 ppm	48%	-
			D2S15W100A	Diesel(83%)+Surfactant(2%)+Water (15%)+Alumina(100 ppm)	891 ppm	0.4%	71 ppm	45%	-
	4S,	Constant Speed (1500 RPM)	Diesel	-	880 ppm	0.50%	95 ppm	68 HSU	
	Vertical, water		MME20	Mehua Methyl Ester(20%) + Diesel(80%)	890 ppm	0.48%	90 ppm	65 HSU	
2	cooled, CR		MME20+ANP50	Mehua Methyl Ester(20%) + Diesel(80%)+ Alumina (50 ppm)	900 ppm	0.35%	78 ppm	55 HSU	
	17.5:1		MME20+ANP100	Mehua Methyl Ester(20%) + Diesel(80%) + Alumina (100 ppm)	950 ppm	0.25%	70 ppm	48 HSU	
	4S, 1-		Diesel	-	1792 ppm	0.05%	37.5 ppm	-	
3	cylinder, 4.4kW CR: 17.5:1,A C	Variable	Diesel + Soybean oil(B20)	80% diesel, 20% Soybean	1921 ppm(†7.2%)	0.05%	48 ppm	-	↑2.2 %
		Speed -	Diesel + Soybean+ ethanol+isopropanol (D80SBD15E4S1 + alumina)	80%diesel, 15%soybean,4%ethanol,1%isopropanol, Alumina 100mg/L	1971 ppm(†9.2%)	0.028 %	46 ppm	-	↓3.3 %

	T			I				Г	44
Ref. No.	Engine Type	Test condition	Fuels	Nano Additives	NOx	СО	UHC	Smoke Opacity	CO2
			Diesel	-	1320 ppm	0.09%	25 ppm	43.50%	
	1-cylinder,		Bio diesel	Jatropha oil	1390 ppm	0.05%	18 ppm	37.60%	
6	RP: 4.4kW at 1500	Constant Speed (1500 RPM)	Diesel+Jatropha+Alumina+Cerium oxide(JBD5A5C)	Alumina 5 ppm and Cerium 5 ppm	1302 ppm	0.03%	17 ppm	33.40%	
-	RPM, CR:17.5:1, AC	, i i i i i i i i i i i i i i i i i i i	Diesel+Jatropha+Alumina+Cerium oxide(JBD15A15C)	Alumina 15 ppm and Cerium 15 ppm	1249 ppm	0.03%	15 ppm	30.20%	
	AC		Diesel+Jatropha+Alumina+Cerium oxide(JBD30A30C)	Alumina 30 ppm and Cerium 30 ppm	1208 ppm	0.02%	12 ppm	25.60%	
			-	-	at higher	24 ppm	33.5 ppm	9%	
7	4S, 1- cylinder, 4.4kW CR:	Variable Speed	Diesel + Pomolin Stearin Wax80% Diesel + 20% PSWME +Methyl Ester+Zinc50 ppm Zinc OxideOxide(D80B20ZnO50)50 ppm Zinc Oxide		load for all the blend	22 ppm	32.5 ppm	8.70%	
	17.5:1,AC		Diesel + Pomolin Stearin Wax Methyl Ester+Zinc Oxide(D80B20ZnO100)	80% Diesel + 20% PSWME + 100 ppm Zinc Oxide	NOx remains the same	21 ppm	31.5 ppm	8%	
	1-cylinder,		Diesel	-	-	-	-	-	-
	13HP,		Diesel + Palladuim (P50)	PdL ₂ 50 ppm	↓4.17%	↓32.65%	-	↓29.01%	-
8	CR:17:1,	Constant Speed	Diesel + Palladuim (P100)	PdL ₂ 100 ppm	↓7.43%	↓42.56%	-	↓37.63%	-
	AC		Diesel + Nickel (N50)	NiL ₂ 50 ppm	↓16.04%	↓44.53%	-	↓31.6%	-
	ne		Diesel + Nickel (N100)	NiL ₂ 100 ppm	↓20.07%	↓50.24%	-	↓39.64%	-
			Jatropha biodiesel (JBD)	-	1282 ppm	-	60 ppm	67%	-
	4S, 1-		Jatropha + Alumina (JBD25A)	25 ppm alumina	-	-	-	-	-
	cylinder,		Jatropha+ Alumina (JBD50A)	50 ppm alumina	1015 ppm	-	52 ppm	58%	-
9	4.4kW CR:	Constant Speed	jatropha +CNT(JBD25CNT)	25 ppm CNT	-	-	-	-	-
	17.5:1,AC		jatropha + CNT(JBD50CNT)	50 ppm CNT	1001 ppm	-	49 ppm	60%	-
	17.0.1/10		Jatropha+ Alumina+CNT(JBD25A25CNT)	Alumina + CNT (25ppm each)	985 ppm	-	46 ppm	57%	-

Ref. No.	Engine Type	Test condition	Fuels	Nano Additives	NOx	СО	UHC	Smoke Opacity	CO ₂
	6-cylinder,		Diesel + Silver Nano powder(DAG10)	10 ppm Silver powder	220 ppm	0.10%	12 ppm	-	-
11	RP:82kW, CR:16:1, AC	Variable Speed	Diesel + Silver Nano powder(DAG20)	20 ppm Silver powder	240 ppm	0.30%	10 ppm	-	-
	<i>n</i> e		Diesel + Silver Nano powder(DAG40)	40 ppm Silver powder	230 ppm	0.30%	10 ppm	-	-
	4S, 1-cylinder, 4.4kW CR: 17.5:1,AC		Diesel + aluminuim+ Span80(A1)	0.5wt% Al particle + 0.1wt% Span80	3.8 %	0.01%	21 ppm	-	-
12		Constant Speed (1500 RPM)	Diesel +boron+ Span80(B1)	0.5wt% Boron particle + 0.1wt% Span80	3.6 %	0.02%	22 ppm	-	-
			Diesel + iron+ Span80(F1)	0.5wt% Iron particle + 0.1wt% Span80	3.2 %	0.015%	23 ppm	-	-
		' Constant Speed (1500 RPM)	Diesel (D0000)	-	1300 ppm	0.05%	54 ppm	37%	-
	4S, 1-cylinder,		Diesel + Alumina+ Cobalt (D3515)	Diesel +35 ppm Alumina+ 15 ppm Cobalt	1250 ppm	0.09%	58 ppm	42%	
13	4.4kW CR: 17.5:1,AC		Diesel + Alumina+ Cobalt (D2525)	Diesel +25 ppm Alumina+ 25 ppm Cobalt	1320 ppm	0.10%	56 ppm	50%	
			Diesel + Alumina+ Cobalt (D1535)	Diesel +15 ppm Alumina+ 35 ppm Cobalt	1200 ppm	0.04%	43 ppm	15%	
			Diesel	-	-	-	-	-	-
14	4S, 1-cylinder, 4.4kW CR: 17.5:1,AC	variable speed	water in diesel (W/D)	1% vol water	↓13%	0.051%	decreased at lower loads and increased at higher loads	-	-
			nano -aluminium in water and diesel (W/DA)	1%vol.water + 0.1%wtnAl	↑5%	0.050%	19%	-	-
			nano -silicon in water and diesel(W/DS)	1%vol.water + 0.1%wtnSi	↑4%	0.048%	$\uparrow 4\%$	-	-

Ref. No.	Engine Type	Test condition	Fuels	Nano Additives	NOx	СО	UHC	Smoke Opacity	CO ₂							
	4S, 1-		Diesel	-	7.40%	0.01%	0.50%	-	-							
15	cylinder, 4.4kW	Constant Speed	Diesel + manganese oxide(MnO)	200 mg of MnO in 1L of diesel	7.18%	0.007%	0.50%	-	-							
	CR: 17.5:1,AC	-	Diesel + copper oxide(CuO)	200 mg of MnO in 1L of diesel	7.20%	0.005%	0.50%	-	-							
			Diesel (D100)	-	650ppm (1500RPM) 640ppm (1300RPM)	0.13% vol (1500RPM) 0.09% vol (1300RPM)	11ppm (1500RPM) 10ppm (1300RPM)	72% (1500RPM) 78% (1300RPM)	-							
		nder, Two speeds								Jojoba Bio diesel (JB20D)	80% Diesel + 20% by vol.Jojoba	700ppm (1500RPM) 600ppm (1300RPM)	0.18% vol (1500RPM) 0.17% vol (1300RPM)	13ppm (1500RPM) 11.8ppm (1300RPM)	80% (1500RPM) 85% (1300RPM)	-
			Jojoba +Alumina (JB20D10A)	80% Diesel + 20% by vol.Jojoba + 10 mg/1	180ppm (1500RPM) 210ppm (1300RPM)	0.04%vol (1500RPM) 0.03%vol (1300RPM)	6.5ppm (1500RPM) 6ppm (1300RPM)	80% (1500RPM) 78% (1300RPM)	-							
16	4s, 1- cylinder, 55kW,		Jojoba +Alumina (JB20D20A)	80% Diesel + 20% by vol.Jojoba + 20 mg/l	160ppm (1500RPM) 190ppm (1300RPM)	0.06%vol (1500RPM) 0.03%vol (1300RPM)	6.5ppm (1500RPM) 6ppm (1300RPM)	72% (1500RPM) 78% (1300RPM)	-							
]	Jojoba +Alumina (JB20D30A)	80% Diesel + 20% by vol.Jojoba + 30 mg/l	175ppm (1500RPM) 180ppm (1300RPM)	0.04% vol (1500RPM) 0.03% vol (1300RPM)	4.5ppm (1500RPM) 5ppm (1300RPM)	86% (1500RPM) 82% (1300RPM)	-						
			Jojoba +Alumina (JB20D40A)	80% Diesel + 20% by vol.Jojoba + 40 mg/l	210ppm (1500RPM) 250ppm (1300RPM)	0.06% vol (1500RPM) 0.04% vol (1300RPM)	5.8ppm (1500RPM) 6ppm (1300RPM)	88% (1500RPM) 80% (1300RPM)	-							
			Jojoba +Alumina (JB20D50A)	80% Diesel + 20% by vol.Jojoba + 50 mg/l	170ppm (1500RPM) 200ppm (1300RPM)	0.03% vol (1500RPM) 0.02% vol (1300RPM)	6.5ppm (1500RPM) 6ppm (1300RPM)	78% (1500RPM) 78% (1300RPM)	-							

Ref. No.	Engine Type	Test condition	Fuels	Nano Additives	NOx	СО	UHC	Smoke Opacity	CO ₂
	4s, 1-		Diesel	-	1310 ppm	90 ppm	2.30%	-	-
17	cylinder, 5.1kW, CR	variable speed	Diesel + Alumina oxide(Al2O3)	Diesel + 50 ppm Alumina oxide	1280 ppm	89 ppm	2.20%	-	-
	20.3:1	speed	Diesel + copper oxide(CuO)	Diesel + 50 ppm copper oxide	1250 ppm	85 ppm	2.20%	-	-
			Diesel+ Bio diesel (B5)	95% Diesel+ 5% Bio diesel	5.14 g/kWh	6.72 g/kWh	0.13 g/kWh	-	-
			Diesel+ Bio diesel (B20)	80% Diesel+ 20% Bio diesel	5.25 g/kWh	6.78 g/kWh	0.14 g/kWh	-	-
		constant speed	Diesel+ Bio diesel +MWCNT- amide(B5)(30ppm)	B5 + 30 ppm MWCNT-amide catalyst	4.85 g/kWh	6.68 g/kWh	0.13 g/kWh	-	-
	4S,6-		Diesel+ Bio diesel +MWCNT- amide(B5)(60ppm)	B5 + 60 ppm MWCNT-amide catalyst	4.81 g/kWh	5.99 g/kWh	0.08 g/kWh	-	-
18	cylinder, CR 16.1:1		Diesel+ Bio diesel +MWCNT- amide(B5)(90ppm)	B5 + 90 ppm MWCNT-amide catalyst	4.19 g/kWh	4.58 g/kWh	0.06 g/kWh	-	-
			Diesel+ Bio diesel +MWCNT- amide(B20)(30ppm)	B20 + 30 ppm MWCNT-amide catalyst	5.22 g/kWh	5.74 g/kWh	0.13 g/kWh	-	-
			Diesel+ Bio diesel +MWCNT- amide(B20)(30ppm)	B20 + 60 ppm MWCNT-amide catalyst	4.70 g/kWh	5.42 g/kWh	0.06 g/kWh	-	-
			Diesel+ Bio diesel +MWCNT- amide(B20)(30ppm)	B20 + 90 ppm MWCNT-amide catalyst	4.26 g/kWh	4.15 g/kWh	0.04 g/kWh	-	-
	4s, 4-		Diesel	-	780 ppm	9 ppm	6 ppm	-	-
19	cylinder,	variable speed	Diesel + water + Glycerin (E10)	78.5% Diesel + 10 % Water + 11.5 % Glycerin	700 ppm	8 ppm	7 ppm	-	-
	9 cylinder, 75kW, CR:18.5:1,	speed	Diesel + water + Glycerin (E15)	75% Diesel + 15 % Water + 10 % Glycerin	660 ppm	8 ppm	4 ppm	-	-

VII. References

- [1] J. SadhikBasha, R.B. Anand. An Experimental Study in a CI engine using nano additive blended water-diesel emulsion fuel, International Journal of Green Energy, 8:3, 332-348
- [2] C. Syed Aalam, C.G. Saravann. Effect of nano metal oxide blended Mahua biodiesel on CRDI diesel engine, Ain Shams Engineering Journal(2015)
- [3] T. Shaafi, R.Velraj, Influence of alumina nano particles, ethanol and isopropanol blends as additive with dieselsoyabeanbiodiesel blend fuel: Combustion, engine performance and emission, Renewable Energy 80(2015) 655-663
- [4] Harish Venu, VenkataramananMadhavan, Effect of Al₂O₃ nano particles in biodiesel-diesel-ethanol blends at various injection strategies: Performance, combustion and emission characteristics, Fuel 186(2016) 176-189
- [5] C. Syed Aalam, C.G. Saravann, M. Kannan, Experimental investigation on a CRDI system assisted diesel engine fuelled with aluminum oxide nano particles blended bio diesel, Alexandra Engineering Journal(2015)
- [6] A.Prabhu, R.B. Anand, Emission control strategy by adding alumina and cerium oxide nano particle in biodiesel, Journal of Energy Institute xxx(2015)1-7
- [7] S. Karthikeyan, A. Elangi and A. Prathima, Performance and emission study on zinc oxide nano particle addition with Pomolion Stearin Wax Biodiesel of CI Engine, Journal of Scientific & Industrial Research Vol 73, March 2014, pp 187-190
- [8]Ali Keskin, KasimOcakoglu, Ibrahim AslanResitoglu, GokturkAvsar, FatihMehmatEmen, BarisBuldum Using Pd(II) and Ni(II) complexes with N,N-dimethyl-N'-2chorobenzoylthiourea ligand as fuel additives in diesel engine Fuel 162 (2015) 202-206
- [9] J. SadhikBasha, R.B. Anand, The influence of nano additive blended biodiesel fuels on the working characteristics of a diesel engine, The Brazilian Society of Mechanical Sciences and Engineering (2013) 35:257-264
- [10] J. SadhikBasha, R.B. Anand, Performance, emission and combustion characteristic of a diesel engine using Carbon nanotubes blended Jatropha Methyl Ester emulsion, Alexandra Engineering Journal(2014)
- [11] H. SoukhtSaraee, S. Jafarmadar, H. Taghavifar, S.J. Ashrafi, Reduction of emission and fuel consumption in a compression ignition engine using nano particles, International Journal of Environment Science and Technology (2015) 12:2245-2252

- [12] Rakhi N. Mehta, MousamiChakraborty, Parimal A. Parikh, Nano fuels: Combustion, engine performance and emissions, Fuel 120(2014) 91-97
- [13] RoshithOommenGoerge, Sajunulal Franc, Sachin Jacob James, Mathew John, Geo Sebastian, An Experimental analysis on synergetic effect of multiple nano paerticel blended diesel fuel on CI engine, International Journal for Innovative Research in Science and Technology, Vol 1, issue 12, May 2015
- [14] Rakhi N. Mehta, MousamiChakraborty, Parimal A. Parikh, Impact of hydrogen generated splitting water with nano silicon and nano aluminum on diesel engine performance, International Journal of hydrogen engrgy 39 (2014) 8098-8105
- [15] M.A. Lenin, M.R. Swaminathan, G. Kumarsen, Performance and emission characteristics of a DI diesel engine with a nannfuel additive, Fuel 109(2013)362-365
- [16] Ali M. A. Attia, Ahmed I. EI- Sessy, Heshman M. EI-Batsh, Mohamed S Shehata, Effects of Alumina nano particle additive into jojoba methyl ester diesel mixture on diesel engine performance, Proceedings of the ASME 2014 International Mechanical Engineering Congress and Exposition
- [17] SonerGumus, HakanOzcan, Mustafa Ozbey, BahattinTopaloglu, Aluminum oxide and copper oxide nanodiesel fuel properties and usage in a compression ignition engine, Fuel 163 (2016) 80-87
- [18] MehrdadMirzajanzadeh, MeisamTabatabaei, Mehdi Ardjmand, AlimoradRashii, Barat Chobadian, Mohammad Barkhi, Mohammad Pazouki, A novel soluble nano-catalyst in diesel- bio diesel blends to improve diesel engine performance and reduce exhaust emissions
- [19]W.M.Yang, H.An, S.K. Chou, S.Vedharaji, R. Vallinagam, M Baalji, F.E.A Mohammed, K.J. E. Chua, Emulsion fuel with nano organic additives for diesel engine application, Fuel 104 (2013) 726-731
- [20]Alabani A. E., Mahila T.M.I., Masjuki H.H., Badruddin I. A. A comparative evaluation of physical and chemical properties of biodiesel synthesized from edible and nonedible oils and study on the effect of biodiesel blending, Energy (2013) 58: 296-304
- [21] Yetter R A, Risha G A, Son SF, Metal particle combustion and nano technology Proc Combustion Inst 2009, 32:1819-38
- [22] http://world.bymap.org/OilConsumption.html